Uniqueness of $$\textit{BP} \langle {n} \rangle $$

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity and (un)decidability of fragments of $\langle \omega^{\omega^\lambda}; \times \rangle$

We specify the frontier of decidability for fragments of the firstorder theory of ordinal multiplication. We give a NEXPTIME lower bound for the complexity of the existential fragment of 〈ωωλ ;×, ω, ω+ 1, ω + 1〉 for every ordinal λ. Moreover, we prove (by reduction from Hilbert Tenth Problem) that the ∃∗∀6-fragment of 〈ωωλ ;×〉 is undecidable for every ordinal λ.

متن کامل

Cyclic codes over $\mathbb{F}_{2^m}[u]/\langle u^k\rangle$ of oddly even length

Let F2m be a finite field of characteristic 2 and R = F2m [u]/〈u 〉 = F2m + uF2m + . . . + u k−1 F2m (u k = 0) where k ∈ Z satisfies k ≥ 2. For any odd positive integer n, it is known that cyclic codes over R of length 2n are identified with ideals of the ring R[x]/〈x − 1〉. In this paper, an explicit representation for each cyclic code over R of length 2n is provided and a formula to count the n...

متن کامل

Cyclic codes over the ring $ \Z_p[u, v]/\langle u^2, v^2, uv-vu\rangle$

Let p be a prime number. In this paper, we study cyclic codes over the ring Z p [u, v]/u 2 , v 2 , uv − vu. We find a unique set of generators for these codes. We also study the rank and the Hamming distance of these codes. We obtain all except one ternary optimal code of length 12 as the Gray image of the cyclic codes over the ring Z p [u, v]/u 2 , v 2 , uv − vu. We also characterize the p-ary...

متن کامل

A rank 18 Waring decomposition of $sM_{\langle 3\rangle}$ with 432 symmetries

The recent discovery that the exponent of matrix multiplication is determined by the rank of the symmetrized matrix multiplication tensor has invigorated interest in better understanding symmetrized matrix multiplication. I present an explicit rank 18 Waring decomposition of $sM_{\langle 3\rangle}$ and describe its symmetry group.

متن کامل

Cyclic codes over $\mathbb{Z}_4[u]/\langle u^k\rangle$ of odd length

Let R = Z4[u]/〈u〉 = Z4 + uZ4 + . . . + uZ4 (u = 0) where k ∈ Z satisfies k ≥ 2. For any odd positive integer n, it is known that cyclic codes over R of length n are identified with ideals of the ring R[x]/〈x − 1〉. In this paper, an explicit representation for each cyclic code over R of length n is provided and a formula to count the number of codewords in each code is given. Then a formula to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Homotopy and Related Structures

سال: 2015

ISSN: 2193-8407,1512-2891

DOI: 10.1007/s40062-015-0120-0